902 research outputs found

    Modeling of CO2 circulation in the Colli Albani area

    Get PDF
    The Colli Albani is a quiescent volcano located nearby the city of Roma, characterised by the presence of an active geothermal system, periodic seismic swarms and intense diffuse degassing. Several accidents, some of which lethal, have occurred in recent years associated to episodes of more intense releases and outbursts of volcanic gases, dominantly CO2 and H2S. Gas emissions are presently the most hazardous phenomenon for the highly populated Colli Albani area, along with the potential occurrence of seismic activity. This chapter presents the numerical modeling of heat and fluid circulation applied to study the mechanisms which control the diffuse degassing at Colli Albani volcano. Multi-phase and multi-component simulations were carried out using the TOUGH2 geothermal simulator in a realistic geological context, which includes all available information on the stratigraphy and structure of the Colli Albani substrate, along with data on the total gas flux, the local geothermal gradient, the local hydrogeology, and the thermal characteristics of the rocks. The geothermal reservoir at Colli Albani is hosted by the 2-3000 m thick Mesozoic-Cenozoic carbonatic succession capped by Pliocene clays which act as aquiclude and are few hundreds to over 1000m thick, in turned covered by continental sedimentary and volcanic deposits, which host the shallow hydrogeological system. Numerical simulations evaluate the effects associated with the thickness of the carbonatic basement and its cap rock; the role of CO2 supply rate at depth; and the influence of permeable channelways through the cap rocks. Numerical simulations show that thickness of the geothermal reservoir hosted by the carbonatic basement and of its impervious cover control the vigor of the convection, the extent and depth (and hence temperature) of the lateral recharge area, and the distribution of the carbon dioxide within the system. This result suggests that the temperature distribution and diffuse degassing at surface do not simply reflect the characteristics of the heat and fluid source at depth, but also the specific structure and hydrological properties of the site where they are measured

    Hydrothermal Fluid Circulation and its Effect on Caldera Unrest

    Get PDF
    This paper focuses on the role that hydrothermal systems may play in caldera unrest. Changes in the fluid chemistry, temperature, and discharge rate of hydrothermal systems are commonly detected at the surface during volcanic unrest, as hydrothermal fluids adjust to changing subsurface conditions. Geochemical monitoring is carried out to observe the evolving system conditions. Circulating fluids can also generate signals that affect geophysical parameters monitored at the surface. Effective hazard evaluation requires a proper understanding of unrest phenomena and correct interpretation of their causes. Physical modeling of fluid circulation allows quantification of the evolution of a hydrothermal system, and hence evaluation of the potential role of hydrothermal fluids during caldera unrest. Modeling results can be compared with monitoring data, and then contribute to the interpretation of the recent caldera evolution. This paper: 1) describes the main features of hydrothermal systems; 2) briefly reviews numerical modeling of heat and fluid flow through porous media; 3) highlight the effects of hydrothermal fluids on unrest processes; and 4) describes some model applications to the Phlegrean Fields caldera. Simultaneous modeling of different independent parameters has proved to be a powerful tool for understanding caldera unrest. The results highlight the importance of comprehensive conceptual models that incorporate all the available geochemical and geophysical information, and they also stress the need for high-quality, multi-parameter monitoring and modeling of volcanic activity

    Hydrothermal fluid circulation and its effect on caldera unrest

    Get PDF
    This paper focuses on the role that hydrothermal systems may play in caldera unrest. Changes in the fluid chemistry, temperature, and discharge rate of hydrothermal systems are commonly detected at the surface during volcanic unrest, as hydrothermal fluids adjust to changing subsurface conditions. Geochemical monitoring is carried out to observe the evolving system conditions. Circulating fluids can also generate signals that affect geophysical parameters monitored at the surface. Effective hazard evaluation requires a proper understanding of unrest phenomena and correct interpretation of their causes. Physical modeling of fluid circulation allows quantification of the evolution of a hydrothermal system, and hence evaluation of the potential role of hydrothermal fluids during caldera unrest. Modeling results can be compared with monitoring data, and then contribute to the interpretation of the recent caldera evolution. This paper: 1) describes the main features of hydrothermal systems; 2) briefly reviews numerical modeling of heat and fluid flow through porous media; 3) highlight the effects of hydrothermal fluids on unrest processes; and 4) describes some model applications to the Phlegrean Fields caldera. Simultaneous modeling of different independent parameters has proved to be a powerful tool for understanding caldera unrest. The results highlight the importance of comprehensive conceptual models that incorporate all the available geochemical and geophysical information, and they also stress the need for high-quality, multi-parameter monitoring and modeling of volcanic activity

    NERO: a code for evaluation of nonlinear resonances in 4D symplectic mappings

    Get PDF
    A code to evaluate the stability, the position and the width of nonlinear resonances in four-dimensional symplectic mappings is described. NERO is based on the computation of the resonant perturbative series through the use of Lie transformation implemented in the code ARES, and on the analysis of the resonant orbits of the interpolating Hamiltonian. The code is aimed at studying the nonlinear moti on of a charged particle moving in a circular accelerator under the influence of nonlinear forces

    MODELING OF GAS COMPOSITION AND GRAVITY SIGNALS AT THE PHLEGREAN FIELDS CALDERA

    Get PDF
    Hydrothermal systems are known to play an important role in the evolution of active calderas: these volcanic systems periodically undergo dramatic unrest crises, commonly involving ground deformation, seismic activity and important changes in several geophysical and geochemical parameters monitored at the surface. These unrest crises may, or may not, culminate with a renewal of the eruptive activity, but in any case they bear important consequences in densely populated regions. Early warning and a prompt evaluation of the state of evolution of the volcanic system are therefore essential to ensure proper mitigation measures. A proper interpretation of monitoring data, however, is only achieved within the framework of a robust conceptual model of the system. Recent research work carried out at the Phlegrean Fields shows that the recent evolution of the caldera is consistent with the presence of a pulsating magmatic source, periodically discharging CO2-enriched fluids into a shallow hydrothermal system. Such pulsating degassing affects the amount of heat and fluids entering the hydrothermal system, the distribution of fluid phases throughout the system, and their composition. As a consequence, degassing controls not only the composition of fluids discharged at the surface, but also ground displacement and gravity residuals. In this work, the TOUGH2 code has been applied to study how different degassing scenarios could affect the composition of discharged fluids and the gravity signals recorded at the surface

    Unique morphologies of <i>Encheliophis vermiops</i> (Carapidae) with revised diagnosis of the genus

    Get PDF
    Encheliophis vermiops was first briefly described in 1990 on the basis of three specimens. This study validates this species and provides previously unrecorded useful characters to realise the identification: (1) the forward orientation of the palatine teeth, (2) the enlarged teeth of the third basibranchial, (3) the particularly well-developed pharyngeal apparatus, (4) the unpigmented band along the base of anal fin and (5) the insertion of the primary sonic muscle on the parasphenoid. Moreover, the particular morphology of Encheliophis vermiops forces us to reconsider the diagnosis of the genus

    Effects of atmospheric conditions on surface diffuse degassing

    Get PDF
    International audienceDiffuse degassing through the soil is commonly observed in volcanic areas and monitoring of carbon dioxide flux at the surface can provide a safe and effective way to infer the state of activity of the volcanic system. Continuous measurement stations are often installed on active volcanoes such as Furnas (Azores archipelago), which features low temperature fumaroles, hot and cold CO2 rich springs, and several diffuse degassing areas. As in other volcanoes, fluxes measured at Furnas are often correlated with environmental variables, such as air temperature or barometric pressure, with daily and seasonal cycles that become more evident when gas emission is low. In this work, we study how changes in air temperature and barometric pressure may affect the gas emission through the soil. The TOUGH2 geothermal simulator was used to simulate the gas propagation through the soil as a function of fluctuating atmospheric conditions. Then, a dual parameters study was performed to assess how the rock permeability and the gas source properties affect the resulting fluxes. Numerical results are in good agreement with the observed data at Furnas, and show that atmospheric variables may cause the observed daily cycles in CO2 fluxes. The observed changes depend on soil permeability and on the pressure driving the upward flux

    Impact of the First Powering Cycles on the LHC Superconducting Dipole Coil Geometry

    Get PDF
    The impact of the first powering cycles on the LHC superconducting dipoles coil geometry has been investigated. Dedicated magnetic measurements have been performed to estimate the changes in the geometric component of the harmonics, caused by the last highest Lorentz force the coil has ever experienced. Several magnets have been powered at increasing current steps while the field quality has been measured to quantify the changes in geometry. The effect of the thermal cycles has been also considered as well as the systematic differences between measurements before and after the quench training. The reconstruction of the coil geometry variations is discussed in terms of continuous modes of deformation as well as single block displacements

    È VIVO: Virtual eruptions at Vesuvius; A multimedia tool to illustrate numerical modeling to a general public

    Get PDF
    Dissemination of scientific results to the general public has become increasingly important in our society. When science deals with natural hazards, public outreach is even more important: on the one hand, it contributes to hazard perception and it is a necessary step toward preparedness and risk mitigation; on the other hand, it contributes to establish a positive link of mutual confidence between scientific community and the population living at risk. The existence of such a link plays a relevant role in hazard communication, which in turn is essential to mitigate the risk. In this work, we present a tool that we have developed to illustrate our scientific results on pyroclastic flow propagation at Vesuvius. This tool, a CD-ROM that we developed joining scientific data with appropriate knowledge in communication sciences is meant to be a first prototype that will be used to test the validity of this approach to public outreach. The multimedia guide contains figures, images of real volcanoes and computer animations obtained through numerical modeling of pyroclastic density currents. Explanatory text, kept as short and simple as possible, illustrates both the process and the methodology applied to study this very dangerous natural phenomenon. In this first version, the CD-ROM will be distributed among selected categories of end-users together with a short questionnaire that we have drawn to test its readability. Future releases will include feedback from the users, further advancement of scientific results as well as a higher degree of interactivity
    corecore